Comparative Evaluation of Integrated Waste Heat Utilization Systems for Coal-Fired Power Plants Based on In-Depth Boiler-Turbine Integration and Organic Rankine Cycle

نویسندگان

  • Shengwei Huang
  • Chengzhou Li
  • Tianyu Tan
  • Peng Fu
  • Ligang Wang
  • Yongping Yang
چکیده

To maximize the system-level heat integration, three retrofit concepts of waste heat recovery via organic Rankine cycle (ORC), in-depth boiler-turbine integration, and coupling of both are proposed, analyzed and comprehensively compared in terms of thermodynamic and economic performances. For thermodynamic analysis, exergy analysis is employed with grand composite curves illustrated to identify how the systems are fundamentally and quantitatively improved, and to highlight key processes for system improvement. For economic analysis, annual revenue and investment payback period are calculated based on the estimation of capital investment of each component to identify the economic feasibility and competitiveness of each retrofit concept proposed. The results show that the in-depth boiler-turbine integration achieves a better temperature match of heat flows involved for different fluids and multi-stage air preheating, thus a significant improvement of power output (23.99 MW), which is much larger than that of the system with only ORC (6.49 MW). This is mainly due to the limitation of the ultra-low temperature (from 135 to 75 ◦C) heat available from the flue gas for ORC. The thermodynamic improvement is mostly contributed by the reduction of exergy destruction within the boiler subsystem, which is eventually converted to mechanical power; while the exergy destruction within the turbine system is almost not changed for the three concepts. The selection of ORC working fluids is performed to maximize the power output. Due to the low-grade heat source, the cycle with R11 offers the largest additional net power generation but is not significantly better than the other preselected working fluids. Economically, the in-depth boiler-turbine integration is the most economic completive solution with a payback period of only 0.78 year. The ORC concept is less attractive for a sole application due to a long payback time (2.26 years). However, by coupling both concepts, a net power output of 26.51 MW and a payback time of almost one year are achieved, which may promote the large-scale production and deployment of ORC with a cost reduction and competitiveness enhancement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvement of Efficiency of Coal-Fired Steam Power Plant by Reducing Heat Rejection Temperature at Condenser Using Kalina Cycle

This paper proposes an approach for improving the plant efficiency by reducing the heat rejection temperature of power cycle using Kalina Cycle System 11 (KCS11) which is integrated at the steam condenser of a 500 MWe SubC (subcritical) coal-fired power plant. It is modelled by using power plant simulation software ‘Cycle Tempo’ at different plant operating conditions. Results show t...

متن کامل

An Improved System for Utilizing Low-Temperature Waste Heat of Flue Gas from Coal-Fired Power Plants

In this paper, an improved system to efficiently utilize the low-temperature waste heat from the flue gas of coal-fired power plants is proposed based on heat cascade theory. The essence of the proposed system is that the waste heat of exhausted flue gas is not only used to preheat air for assisting coal combustion as usual but also to heat up feedwater and for low-pressure steam extraction. Ai...

متن کامل

Exergy Analysis of a Novel Combined System Consisting of a Gas Turbine, an Organic Rankine Cycle and an Absorption Chiller to Produce Power, Heat and Cold

The current work investigates the exergy analysis of a new system to generate power, heat, and refrigeration. In the proposed system, the heat loss of a gas turbine (GT) is first recovered by a Heat Recovery Steam Generator (HRSD), then by an Organic Rankine Cycle (ORC) to generate warm water and additional power, respectively. In the ORC, reheating is used to increase the output power, the req...

متن کامل

Unit-i Introduction to Power Plants and Boilers

A thermal power station is a power plant in which the prime mover is steam driven. Water is heated, turns into steam and spins a steam turbine which drives an electrical generator. After it passes through the turbine, the steam is condensed in a condenser and recycled to where it was heated; this is known as a Rankine cycle. The greatest variation in the design of thermal power stations is due ...

متن کامل

Performance Analysis of CCGT Power Plant using MATLAB/Simulink Based Simulation

Combined Cycle Gas Turbine (CCGT) integrates two cyclesBrayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. In modern gas turbine the temperature of the exhaust gases is in the range of 500 oC to 550 oC. Modern steam power plants have steam temperature in the range of 500 oC to 630 oC. Hence gas turbine exhaust can be utilized ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2018